Please use this identifier to cite or link to this item: http://univ-bejaia.dz/dspace/123456789/20807
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAmrane, Abdesalam-
dc.contributor.authorMeziane, Abdelkrim;promoteur-
dc.date.accessioned2022-12-19T13:44:01Z-
dc.date.available2022-12-19T13:44:01Z-
dc.date.issued2022-
dc.identifier.other004D/149-
dc.identifier.urihttp://univ-bejaia.dz/dspace/123456789/20807-
dc.descriptionOption :réseaux et systémes de distribuésen_US
dc.description.abstractInformation extraction from multimedia content is a challenging task. In this thesis, we present an architecture of multimedia contents classification system that provides different phases to extract semantic information from broadcasted streams, starting with the segmentation process, news topics extraction, and advertisement detection and classification. Next, we give an extension to our framework and describes an audio-based hybrid model for content classification combining different deep neural networks with auto-encoder applied to advertisement detection in TV broadcast. Our models achieve high levels of precision. The last contribution consists of a distributed architecture based on the Kafka and Spark frameworks which offer parallel processing of TV streams, we demonstrate through this work the scalability and robustness of this architecture.en_US
dc.language.isoenen_US
dc.publisheruniversité Abderahman Mira Bejaiaen_US
dc.subjectMultimedia processing: Parallel processing:Deep learning:TV streamen_US
dc.titleMultimedia Content Classification in the Clouden_US
dc.typeThesisen_US
Appears in Collections:Thèses de Doctorat

Files in This Item:
File Description SizeFormat 
thesis_amrane.pdf2.53 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.