Please use this identifier to cite or link to this item: http://univ-bejaia.dz/dspace/123456789/24949
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAmarouche, Faiza-
dc.contributor.authorOuaret, Djamila-
dc.contributor.authorEl Bouhissi Brahami, Houda ; promotrice-
dc.date.accessioned2024-12-10T09:35:27Z-
dc.date.available2024-12-10T09:35:27Z-
dc.date.issued2024-07-02-
dc.identifier.other003mas/377-
dc.identifier.urihttp://univ-bejaia.dz/dspace/123456789/24949-
dc.descriptionOption : Sciences des données et aide a la décisionen_US
dc.description.abstractDiabetes is a critical global health issue affecting millions worldwide, with cases steadily increasing. Our research focuses on blood glucose levels prediction using a CRNN (Convolutional Recurrent Neural Network) model applied to a newly accessible and extensive dataset, "HUPA-UCM Diabetes," aiming to identify hyperglycemia and hypoglycemia events to enhance diabetes management accurately. This hybrid model integrates CNN and LSTM layers to effectively capture spatial and temporal dependencies in the data, achieving superior accuracy. It utilizes variables such as time, glucose, calories, heart rate, steps, basal rate, bolus volume delivered, and carb input. Our model demonstrated an RMSE value of 3.20 on the testing set, outperforming our state-of-the-art. Furthermore, real-time processing, implemented at five-minute intervals, ensures immediate responses to blood sugar variations with an RMSE of 4.63, improving patient outcomes.en_US
dc.language.isoenen_US
dc.publisherUniversité Abderramane Mira-Bejaiaen_US
dc.subjectDiabetes : Hyperglycemia : Hypoglycemia : Blood glucose levels prediction : CRNN modelen_US
dc.titleHypoglycemia and Hyperglycemia Prediction using Machine Learningen_US
dc.typeThesisen_US
Appears in Collections:Mémoires de Master

Files in This Item:
File Description SizeFormat 
PFC__AMAROUCHE___OUARET.pdf3.51 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.