Abstract:
The aging of materials is a degradation or a slow evolution of the properties of the material resulting from its
intrinsic instability or caused by more or less aggressive external factors. Based on the literature, the
degradation of polylactic acid (PLA) biocomposites mainly consists of hydrothermal degradation and
photodegradation, the PLA/natural fibers interface is one of the main factors affecting the rate of hydrolytic
degradation. With the addition of vegetable fibers, greater degradation is observed. Thus, because of their
hydrophobicity, the biocomposite obtained has a greater moisture uptake causing swelling at the fiber/matrix
interface. This causes cracking and degradation by more significant chain cuts. This work reports on the
hydrolytic aging of biocomposites which were composed of Alfa fiber and Polylactic acid (PLA) prepared by
extrusion. To improve the fiber/matrix compatibility, the Alfa fiber has been treated with a dispersing agent
which is BYK W-980. Spectroscopic (FTIR), thermal, and water absorption tests before and after hydrolytic aging of biocomposites have been studied and compared. The results revealed that PLA/Alfa biocomposites in the presence of BYK W-980 are more resistant to hydrolytic aging compared to untreated composites.